Call: 0123456789 | Email:

TAZ activation by Hippo pathway dysregulation induces cytokine gene expression and promotes mesothelial cell transformation

  • 1.

    Yap TA, Aerts JG, Popat S, Fennell DA. Novel insights into mesothelioma biology and implications for remedy. Nat Rev Most cancers. 2017;17:475–88.

  • 2.

    Frank AL, Joshi TK. The worldwide unfold of asbestos. Ann Glob Well being. 2014;80:257–62.

  • Three.

    Robinson BW, Lake RA. Advances in malignant mesothelioma. N Engl J Med. 2005;353:1591–603.

  • four.

    Disselhorst MMJ, Burgers SJA, Baas P. Optimum remedy of superior stage mesothelioma. Curr Deal with Choices Oncol. 2017;18:48.

  • 5.

    Bibby AC, Tsim S, Kanellakis N, Ball H, Talbot DC, Blyth KG, et al. Malignant pleural mesothelioma: an replace on investigation, prognosis and remedy. Eur Respir Rev.. 2016;25:472–86.

  • 6.

    Nelson DB, Rice DC, Niu J, Atay S, Vaporciyan AA, Antonoff M, et al. Lengthy-term survival outcomes of cancer-directed surgical procedure for malignant pleural mesothelioma: propensity rating matching evaluation. J Clin Oncol. 2017;35:3354–62.

  • 7.

    Bianchi AB, Mitsunaga SI, Cheng JQ, Klein WM, Jhanwar SC, Seizinger B, et al. Excessive frequency of inactivating mutations within the neurofibromatosis sort 2 gene (NF2) in main malignant mesotheliomas. Proc Natl Acad Sci USA. 1995;92:10854–eight.

  • eight.

    Bueno R, Stawiski EW, Goldstein LD, Durinck S, De Rienzo A, Modrusan Z, et al. Complete genomic evaluation of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48:407–16.

  • 9.

    Sekido Y, Move HI, Bader S, Mew DJ, Christman MF, Gazdar AF, et al. Neurofibromatosis sort 2 (NF2) gene is somatically mutated in mesothelioma however not in lung most cancers. Most cancers Res. 1995;55:1227–31.

  • 10.

    Felley-Bosco E, Stahel R. Hippo/YAP pathway for focused remedy. Transl Lung Most cancers Res. 2014;Three:75–83.

  • 11.

    Sekido Y. Molecular pathogenesis of malignant mesothelioma. Carcinogenesis. 2013;34:1413–9.

  • 12.

    Yu FX, Zhao B, Guan KL. Hippo pathway in organ dimension management, tissue homeostasis, and most cancers. Cell. 2015;163:811–28.

  • 13.

    Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human most cancers. Nat Rev Most cancers. 2013;13:246–57.

  • 14.

    Murakami H, Mizuno T, Taniguchi T, Fujii M, Ishiguro F, Fukui T, et al. LATS2 is a tumor suppressor gene of malignant mesothelioma. Most cancers Res. 2011;71:873–83.

  • 15.

    Tanaka I, Osada H, Fujii M, Fukatsu A, Hida T, Horio Y, et al. LIM-domain protein AJUBA suppresses malignant mesothelioma cell proliferation through Hippo signaling cascade. Oncogene. 2015;34:73–83.

  • 16.

    Tranchant R, Quetel L, Tallet A, Meiller C, Renier A, de Koning L, et al. Co-occurring mutations of tumor suppressor genes, LATS2 and NF2, in malignant pleural mesothelioma. Clin Most cancers Res. 2017;23:3191–202.

  • 17.

    Yokoyama T, Osada H, Murakami H, Tatematsu Y, Taniguchi T, Kondo Y, et al. YAP1 is concerned in mesothelioma improvement and negatively regulated by Merlin by means of phosphorylation. Carcinogenesis. 2008;29:2139–46.

  • 18.

    Fujii M, Toyoda T, Nakanishi H, Yatabe Y, Sato A, Matsudaira Y, et al. TGF-beta synergizes with defects within the Hippo pathway to stimulate human malignant mesothelioma progress. J Exp Med. 2012;209:479–94.

  • 19.

    Mizuno T, Murakami H, Fujii M, Ishiguro F, Tanaka I, Kondo Y, et al. YAP induces malignant mesothelioma cell proliferation by upregulating transcription of cell cycle-promoting genes. Oncogene. 2012;31:5117–22.

  • 20.

    Kakiuchi T, Takahara T, Kasugai Y, Arita Okay, Yoshida N, Karube Okay, et al. Modeling mesothelioma using human mesothelial cells reveals involvement of phospholipase-C beta four in YAP-active mesothelioma cell proliferation. Carcinogenesis. 2016;37:1098–109.

  • 21.

    Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and past. Tendencies Cell Biol. 2015;25:499–513.

  • 22.

    Huang W, Lv X, Liu C, Zha Z, Zhang H, Jiang Y, et al. The N-terminal phosphodegron targets TAZ/WWTR1 protein for SCFbeta-TrCP-dependent degradation in response to phosphatidylinositol Three-kinase inhibition. J Biol Chem. 2012;287:26245–53.

  • 23.

    Tian Y, Kolb R, Hong JH, Carroll J, Li D, You J, et al. TAZ promotes PC2 degradation by means of a SCFbeta-Trcp E3 ligase advanced. Mol Cell Biol. 2007;27:6383–95.

  • 24.

    Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ on the Roots of Most cancers. Most cancers Cell. 2016;29:783–803.

  • 25.

    Moroishi T, Hansen CG, Guan KL. The rising roles of YAP and TAZ in most cancers. Nat Rev Most cancers. 2015;15:73–79.

  • 26.

    Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006;34:D354–357.

  • 27.

    Adachi Y, Aoki C, Yoshio-Hoshino N, Takayama Okay, Curiel DT, Nishimoto N. Interleukin-6 induces each cell progress and VEGF manufacturing in malignant mesotheliomas. Int J Most cancers. 2006;119:1303–11.

  • 28.

    Kadariya Y, Menges CW, Talarchek J, Cai KQ, Klein-Szanto AJ, Pietrofesa RA, et al. Irritation-related IL1beta/IL1R signaling promotes the event of asbestos-induced malignant mesothelioma. Most cancers Prev Res (Phila). 2016;9:406–14.

  • 29.

    Stadlmann S, Pollheimer J, Renner Okay, Zeimet AG, Offner FA, Amberger A. Response of human peritoneal mesothelial cells to inflammatory harm is regulated by interleukin-1beta and tumor necrosis factor-alpha. Wound Restore Regen. 2006;14:187–94.

  • 30.

    Wang Y, Fake SP, Hallden G, Kirn DH, Houghton CE, Lemoine NR, et al. Interleukin-1beta and tumour necrosis factor-alpha promote the transformation of human immortalised mesothelial cells by erionite. Int J Oncol. 2004;25:173–eight.

  • 31.

    Menezes ME, Bhatia S, Bhoopathi P, Das SK, Emdad L, Dasgupta S, et al. MDA-7/IL-24: multifunctional most cancers killing cytokine. Adv Exp Med Biol. 2014;818:127–53.

  • 32.

    Whitaker EL, Filippov VA, Duerksen-Hughes PJ. Interleukin 24: mechanisms and therapeutic potential of an anti-cancer gene. Cytokine Progress Issue Rev. 2012;23:323–31.

  • 33.

    Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science. 2005;309:1074–eight.

  • 34.

    Chan SW, Lim CJ, Lavatory LS, Chong YF, Huang C, Hong W. TEADs mediate nuclear retention of TAZ to advertise oncogenic transformation. J Biol Chem. 2009;284:14347–58.

  • 35.

    Mahoney WM Jr., Hong JH, Yaffe MB, Farrance IK. The transcriptional co-activator TAZ interacts differentially with transcriptional enhancer factor-1 (TEF-1) relations. Biochem J. 2005;388:217–25.

  • 36.

    Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 2008;10:837–48.

  • 37.

    Chan SW, Lim CJ, Guo Okay, Ng CP, Lee I, Hunziker W, et al. A task for TAZ in migration, invasion, and tumorigenesis of breast most cancers cells. Most cancers Res. 2008;68:2592–eight.

  • 38.

    Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, et al. The Hippo transducer TAZ confers most cancers stem cell-related traits on breast most cancers cells. Cell. 2011;147:759–72.

  • 39.

    Bhat KP, Salazar KL, Balasubramaniyan V, Wani Okay, Heathcock L, Hollingsworth F, et al. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev. 2011;25:2594–609.

  • 40.

    Yang Z, Nakagawa Okay, Sarkar A, Maruyama J, Iwasa H, Bao Y, et al. Screening with a novel cell-based assay for TAZ activators identifies a compound that enhances myogenesis in C2C12 cells and facilitates muscle restore in a muscle harm mannequin. Mol Cell Biol. 2014;34:1607–21.

  • 41.

    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment evaluation: a knowledge-based strategy for decoding genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

  • Source link

    Have any Question or Comment?

    Leave a Reply

    Your email address will not be published. Required fields are marked *